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The effect of recirculation on the operating conditions of a chemical reactor, 
a model of which was proposed earlier in [i], is discussed. The feasibility 
and efficiency of carrying out many chemical processes in systems with recir- 
culation was demonstrated in [2]. An investigation has also been made of the 
stability of operating conditions for one simple model of a reactor with a re- 
cycle [3]. In [i], a mathematical model was proposed for an ideal-displace- 
ment chemical reactor, taking integral account of heat evolution, in which 
diffusional transfer is negligibly small in comparison with convective transfer, 
and the thermal conductivity is so great that the temperature inside the reac- 
tor can be assumed to be identical. An investigation was made of the question 
of steady-state conditions and their stability. Below, this question is discussed 
for the case where, in such a reactor, part of the stream passing through 
the reactor is again fed to its inlet. As in [i, 4], account is taken of the 
dependence of the viscosity of the mixture of reagents and the reaction products 
on the temperatur e . 

i. Equations. Boundary Condition, Steady-State Conditions 

The equations of mass and heat transfer in an adiabatic reactor taking integral ac- 
count of heat evolution in the presence of a recycle have the form 

o~ o~ Pt (T) (~m --  ~ =~0 P ~F + m~-z - (i.i) 
! 

o p ._~_  +__~l m ( l  _ r ) ( T - -  T , ) - - . 7 - .  / - -  = 
O 

Here  x ,  t a r e  t he  c o o r d i n a t e  and t h e  t i m e ;  l i s  t h e  l e n g t h  o f  t h e  r e a c t o r  (0 = x ~ / ) ;  
i s  t h e  d e g r e e  t o  which  t h e  r e a c t i o n  has  t a k e n  p l a c e ;  ~_ i s  t h e  maximum v a l u e  o f  t h e  d e g r e e  

t o  which t h e  r e a c t i o n  has  t a k e n  p l a c e ;  m i s  t he  mass v e l o c i t y  o f  t h e  m i x t u r e  i n  t he  r e a c t o r ;  
p i s  t he  d e n s i t y  o f  t he  m i x t u r e ;  T i s  t h e  t e m p e r a t u r e ;  f ( T )  i s  t h e  dependence  o f  t he  r a t e  
o f  t h e  c h e m i c a l  r e a c t i o n  on t h e  t e m p e r a t u r e ,  a f u n c t i o n  o f  t h e  A r r h e n i u s  t y p e ;  h i s  t h e  head 
of  t h e  r e a c t i o n s ;  c~ i s  t h e  h e a t  c a p a c i t y  o f  t h e  m i x t u r e ;  c i s  t h e  t o t a l  h e a t  c a p a c i t y  o f  t h e  
m i x t u r e  and t h e  c a t a l y s t ;  To i s  t h e  t e m p e r a t u r e  o f  t h e  s t a r t i n g  m i x t u r e ;  r i s  t he  r e c i r c u l a -  
tion coefficient . . . .  

Assuming that the filtrational motion of the mixture through the bed of catalyst obeys 
the Darcy law, the mass velocity of the flow can be expressed in terms of the pressure drop 
at the outlet and inlet of the reactor P, 

m = k P / ~ I  (1.3) 

where v = w(T) is the kinematic viscosity of the mixture, and k is the permeability. 

We supplement Eq. (i;i) by a boundary condition taking account of the presence of a 

(0, t) = r~(l ,  t) + ( t - - r )  ~o. ( 1 .4 )  
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The analysis of steady-state conditions reduces to determination of the function 
t~ and tlhe value of T ~ from (1.2) with ~/$t = 0; for ~~ we can obtain 

(1.5) 

The transcendental equation for T o has the form 

The number o f  s e t s  o f  s t e a d y - s t a t e  o p e r a t i n g  c o n d i t i o n s  w i t h  a r e c y c l e  i s  e q u a l  t o  
t h e  number o f  s o l u t i o n s  o f  gq.  (1 . ' 6 ) .  

A n a l y s i s  o f  Eq. ( 1 . 6 )  i s  most  c o n v e n i e n t l y  c a r r i e d  ou t  g r a p h i c a l l y ,  a s suming  t h e  l e f t  
and r i g h t  p a r t s  to  be f u n c t i o n s  o f  f .  F i g u r e  1 shows t he  c o u r s e  o f  the  dependences  T o = 
T ~ ( f ) ,  

/ ( T  ~ ) - - - - B e x p ( - - E / R T  ~ (1 .7 )  

The intersections of the curves determine the steady-state conditions. With an in- 
crease in the recirculation coefficient, the curves corresponding to the right-hand part 
will lie above (exothermic reaction) or below (endothermic reaction), as before passing 
through the point T -- To, f = 0, and retaining the previous asymptotes, 

h 
= To + %77 (~m -- ~~ 

pc1 

It can be seen that a rise in the value of the parameter r in the case of an exother- 
mic reaction can lead to a change in the number of sets of conditions (either to an in- 
crease or a decrease), while, at the same time, with an endothermic reaction, only one set 
of conditions is possible. 

It can be seen also that both stable steady-state conditions (i) and unstable condi- 
tions (2) are possible. 

2. Stability of Steady-State Conditions 

We introduce the dimensionless variables 

x '  = x l l, T" = T / To,  ~ ; ' = v / ~ ;  ~ 
m ' = m / , n o ,  P = P / P ~  t ' = t / ( l p / r a  ~ 
S - -  pt~ (I) (T') f (F) h (~., - -  ~o) 

a = ~m--~ 
~m--~~ I"----To/T ~ 
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Then relationships (1.1)-(1.6) (in what follows, we omit the primes on the newly in- 
troduced quantities) assume the form 

Oao._7_ 4_m ~x SaqP (T) = 0 ( 2 . 1  ) 

1 

Ot -]- km (T - -  T) - -  ~Sq) (T) adx = 0 ( 2 . 2 )  
0 

M = P Iv ( 2 . 3 )  

a (0, t) ---- ra (1,  t) + t - -  r ( 2 . 4 )  

(1 -- r) , e_S= r (2.5) 
a ~ (x)  = (t - ~e - s )  

z (I -- r) ( 2 . 6 )  
(i - -  T) = ( i  ----~e-s> (i - -  e -s) 

In the analysis of the stability we use the method of small perturbations. We repre- 
sent r(t), a(x, t), re(t), P(t) in the form 

K = / ~  q- 6K 
T = t + 6 T ,  a = a ~  r n = t + 6 m  ( 2 . 7 )  
P = t + ~ p  

A f t e r  l i n e a r i z a t i o n ,  i n  p l a c e  o f  ( 2 . 1 ) - ( 2 . 4 )  we o b t a i n  

0 (6a) 0 (6a) 
Ot + ~ _ S6a + Kte-Sx~T --  Kte-Sx6p = 0 ( 2 . 8 )  

1 

-~- (6T) + K36T - -  K4 6 a d x  + K~6p = 0 ( 2 . 9 )  
0 

~a (0, t) ---- r6a ( t ,  t) ( 2 . 1 0 )  
l O m ~ ~  . lore x ~ [ O~ ~o 

~'~ = U x f )  op + [ ~ j  6 r  = @ - x o r  j 6 r  
Oq) ~ 

K1 -- (I _re-S) . _ _  ~ 01" I J 
S ( l - - r )  K3 =~i ,  r [[ 0q)~o ( 'Or)o]  

K~ = ( l - - re  -s) ' (1 " r e  -s) L( OT ] "~ 

~(i--r) ( l _ e _ S )  ' ~ = ~ - ( i - - r )  K s = z S ,  K s - -  (~--re.S) 

assuming X = const, y = const. We assume that perturbations of the steady-state conditions 
are brought about by a change in the pressure drop, the degree to which the reaction has 
taken place, and the temperature. 

0, t < 0  

6p = exp (--(~ot)(t> 0 ) ,  Re 0 0 >  0 ( 2 . 1 1 )  
~a  (z ,  0)  = ~ ( x ) ,  8 T  (0)  = m 

Here  t h e  v a l u e s  o f  n~(x)  and ~= a r e  a r b i t r a r y .  We f i n d  t h e  s o l u t i o n  o f  t h e  p ro b l em  ( 2 . 8 ) -  
( 2 . 1 0 )  by t h e  method o f  L a p l a c e  t r a n s f o r m a t i o n ;  f o r  ~ p ( t ) ,  d a ( x ,  t ) ,  and 6 T ( t )  we i n t r o -  
duce  t r a n s f o r m s  u s i n g  t h e  f o r m u l a  

oo 

6K* (z, x) ----- I exp (--  zt):SK dt 
o 

After application of a Laplace transform, we obtain 

( s +  + + 
l 

6 T * ( z + K 3 ) - - K ~  8 a* d z~  ~o+z ~ h = 0  
o 

6a* (0, z) = r6a* ( t ,  z) 

To s o l v e  ( 2 . 1 2 ) - ( 2 . 1 4 ) ,  we f i r s t  i n t e g r a t e  Eq. 

(z) = o 

~a*" --- ce  "(s+z)x ~ K2e-SX 
(zo + z) z 

(2.12) , 

K~ 6T,e_Sx q_ ] (x) g 

(2.12) 

(2.13) 

(2.14) 

828 



where c is found from Eq. 

C = = - -  

I 

Calculating I 6a*dx 
0 

c = c (z), ~ (x) = e -(s+z)x I e(S+~)~h (Y) dy 
0 

(2.14), 

Kz (re -s  - -  t) _[_. K1 (t - -  re -s) 6T* -~ 
(zo -/- z) z ~ (1 - -  re -(s+~)) z (1 - -  re -(s+~)) 

and substituting into (2.13), we obtain 

6T* =- [lq~ q- K4 (N~ -t- N~) aoK~z J ~ -~ 

Here 

J(t) 
[l - -  re~(s+~) l 

K~ (re -s - -  l) (i - -  e -<S+z)) 
N I = ~ [ ( t - - ~  e-s) -~ ( i _ r e - ( S + z ) ) " ( z ~ S )  ] 

1 
r Y (t) [t --e -(s+z)] 

Nz J(z)dz A [ l - ~ s + ~ )  l (s + ~) 
0 

z (~ + S) (e ~ - -  re -s) 

h = e ~ [z  3 + cosz ~ - -  ~  + (%] - -  ~o [ z3 + o)sz ~ - -  o)11 - -  o~ 
co o - -  re - s  , o) 1 = - -  SL 

O0 o .  
0 ) ~ - - ~ -  ~3S ~ ( t -  e-Sr) ~ -  - ~ OT ] J 

[( + 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Here the degree sign denotes quantities related to steady-state conditions. A transi- 
tion from the Laplace transform to the inverse transform raises no difficulty, since all 
the singularities of the function are poles; the point z = 0 is not a pole, therefore, the 

I 

numerator also has this value as a single root. The quantities J(x), IJ(x)dx have poles 
0 

only in the plane z with the real part Re z =--S. 

This is easily demonstrated. We represent ~1(x) in the form of a Fourier series~ 
then 

~h (x) ----- ~ ,  [aK sin (Kax) + bK cos (K~x)] 
K=0 

e(S+z) x 
J (x) = e-(s+z) ~=o (S 4- z)~ 4- (K.~)2 {[(z + S) sin (K~tx) - -  

- -  Krt cos(Kax)]  - -  [(z + S) cos (K~tx) --]- K n  sin (Kzx)]} '  

consequently, z K = -~ • iK~. 

Therefore, the source of the instability [i.e., of the poles (2.16), lying to the 
right of the straight line Re z = 0] can only be the function fl- In investigation of 
the position of the roots of this function, we shall use the idea of the method of a D- 
partition, developed by Neimark [5, 6]. Since ~i depend on more than four parameters, 
we can consider the case where all ~i (except, perhaps, for one or two) are fixed, while 
the remaining ones can vary. 

Let ~o and m3 be fixed; we consider the plane mlm2 in the four-dimensional space (~o, 
~I, m2, ms). Let us find the curve for which (2.17) has a purely imaginary root z = iy. 
It consists of a curve in the parametric statement 

=-Y * (q--~0W~IT~ 
:N : (! --__2~ co~ y 4- m0~) ~ (2.19) 

= ~3 (I -- cog v)(i T~0) y 
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as well as of the straight line 
(o8 (1 -- coo) 

col = 2 ( i  + COo) 

t~  ( l  - -  OOo)2 
(08 = 2 (-V+T~7 

(02 ---- ~)I (i -- (02) (2.20) . 

which is obtained for the case y = 0, since, under these circumstances, the equations 

Im II(~Y) = 0, Be 11(~Y) = 0 

coincide. 

With a change in ~i, the root can go over from the region where Re z > 0 to the re- 
gion Re z < 0, intersecting the curve N(Re z = 0). We hatch the curve of N with a posi- 
tive rotation of y from--~ to ~ from the right, if the root goes over from the right-hand 
half-plane z to the left-hand half-plane, and from the left, in the contrary plane. The 
region of stability must be sought in the region [4] 

i - - t  ~  J-O (2.21) 

i.e., 

O< O)o<t 

The region of stability is illustrated in Fig. 2. Depending on the values of ~o and 
ms, the region of stabilitY varies from the region lying (with a fixed value of ~o) between 
the axis m2 = 0; ~ < 0 and the straight line m2 = m~(l -- mo) with the value ~a = 0, to the 
point 

2(0 * (1 - -  (on) 2(0 * ( l  - -  (oo)~ (2.22) 

with 
3 (1 - -  coo) 

0)3* = - -  ~ o  + (t -t- O)o)~ 

We return now to the parameters of (2.18). From (2.21) it follows that the recycle 
parameter can vary from 0 to i. It follows from (2.18) that, with ms = const, 

~ = ~ I S q - S ~ ( ~ s _ _ S )  (2.23) 

Following the values of S, we can determine the intervals in which the operating con- 
ditions of the reactor are stable; the limiting value S* is found from (2.23) taking ac- 
count of (2.22). Thus, with mo = 0, i.e., r = 0, 

S * - ~ 0 . 7  (2.24) 

It follows from (2.24) that there is stability if S ~ [SA, SB], where S h and S B are, 
respectively, the values of the parameter S with the intersection between th6 straight 
line DC, determined by (2.23), and the straight line m2 = ~I(i -- mo) at points A and B 
(see Fig. 2). 

It can be shown further that, at the boundary of the region of stability, the condi- 
tions are stable in a neutral manner; at the part of the boundary which is formed by the 
surface N, the perturbation of the steady-state conditions has the character of neutral 
fluctuations with a frequency differing from zero. 

Clarification of the region of stability in the physical variables S, r, %, o, ... 
reduces to a transition to the parameters m i and to an investigation of the position of 
the corresponding point with respect to tile stability limits found. 

i. 
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